Search results

Search for "oxidative stress" in Full Text gives 66 result(s) in Beilstein Journal of Nanotechnology.

Classification and application of metal-based nanoantioxidants in medicine and healthcare

  • Nguyen Nhat Nam,
  • Nguyen Khoi Song Tran,
  • Tan Tai Nguyen,
  • Nguyen Ngoc Trai,
  • Nguyen Phuong Thuy,
  • Hoang Dang Khoa Do,
  • Nhu Hoa Thi Tran and
  • Kieu The Loan Trinh

Beilstein J. Nanotechnol. 2024, 15, 396–415, doi:10.3762/bjnano.15.36

Graphical Abstract
  • Antioxidants play an important role in the prevention of oxidative stress and have been widely used in medicine and healthcare. However, natural antioxidants have several limitations such as low stability, difficult long-term storage, and high cost of large-scale production. Along with significant advances in
  • ; oxidative stress; Introduction Reactive oxygen species (ROS) play an important role in proper cellular functions and adaptation. However, an excess of free ROS in biological systems can lead to oxidative stress-related diseases such as inflammatory disorders, neurological diseases, aging-related diseases
  • , and cancers [1][2]. The human body naturally defends itself against oxidative stress by using antioxidant biomolecules. With the excellent ROS scavenging effect, antioxidants significantly contribute to the balance of ROS and protect the human body from free radicals, which are produced either by
PDF
Album
Review
Published 12 Apr 2024

Nanomedicines against Chagas disease: a critical review

  • Maria Jose Morilla,
  • Kajal Ghosal and
  • Eder Lilia Romero

Beilstein J. Nanotechnol. 2024, 15, 333–349, doi:10.3762/bjnano.15.30

Graphical Abstract
  • with fetal components in vivo [16][17][18]. The consumption of glutathione resulting from its reaction with BNZ metabolites would later lead to oxidative stress processes. One of the main disadvantages of BNZ pharmacotherapy is the high doses administered, thought to be responsible for the pronounced
  • proteins, and prematurely release their cargos; also, they are phagocytosed by circulating monocytes or tissue macrophages to be degraded. This gives rise to the emergence of new modes of toxicity, including hemolysis, inflammation, oxidative stress, and impaired lysosomal or mitochondrial function. In the
  • . The extracellular or intracellular character of the targets must be known beforehand, as well as the diseased tissue’s location, the presence of acidity, oxidative stress, or associated inflammation. The pathophysiology and the nature of targets in CD, however, seem not to be completely defined yet
PDF
Album
Review
Published 27 Mar 2024
Graphical Abstract
  • acceleration of damage to the biological membrane. A positive coefficient of Electron Active M indicates more oxidative stress and more damage to the cell due to an increase in free radicals. WO3 has a high descriptor value of 74 resulting in high cell damage (−2.8), while Cr2O3 NP has a low descriptor value
  • intensity of oxidative stress. This happens because longer exposure times enhance the toxicity mechanism of NPs. In contrast, short-term exposure does not affect significantly the cells. NPs can induce oxidative stress by impairing antioxidant defenses in humans when they are chronically exposed to NPs
  • D1metal descriptor (model 2) draws attention to the fact that metal oxides are good candidates for generating oxidative stress in cells. The ∑χ/nO descriptor suggested a higher oxygen requirement for damaging the cells. It indicates that a higher fraction of oxygen in the metal oxide nanoparticles can
PDF
Album
Supp Info
Full Research Paper
Published 12 Mar 2024

Nanotechnological approaches in the treatment of schistosomiasis: an overview

  • Lucas Carvalho,
  • Michelle Sarcinelli and
  • Beatriz Patrício

Beilstein J. Nanotechnol. 2024, 15, 13–25, doi:10.3762/bjnano.15.2

Graphical Abstract
  • scavenge free radicals [27]. After that, many authors related a reduction in oxidative stress markers in vivo after metalic nanoparticle administration and/or amelioration in histopathological characteristics after infection, which corroborates the first hypothesis [27][28][29][30][31][32][33][34]. Solid
  • mobility, couple separation, and tegument alterations. In vivo, the main criteria used is reducing worm burden, quantity and diameter of granuloma, eggs in feces, and oxidative stress markers (e.g., glutathione, nitrite/nitrate, and malondialdehyde). Generally, articles that do not show effectiveness data
  • . The nanoparticles avoided weight gain in infected mice, increased glutathione levels, and reduced the levels of oxidative stress markers. This work showed that selenium nanoparticles were even more effective than PZQ, reducing inflammation signs in jejunal tissue and tissue injury levels similarly to
PDF
Album
Supp Info
Review
Published 03 Jan 2024

Sulfur nanocomposites with insecticidal effect for the control of Bactericera cockerelli

  • Lany S. Araujo-Yépez,
  • Juan O. Tigrero-Salas,
  • Vicente A. Delgado-Rodríguez,
  • Vladimir A. Aguirre-Yela and
  • Josué N. Villota-Méndez

Beilstein J. Nanotechnol. 2023, 14, 1106–1115, doi:10.3762/bjnano.14.91

Graphical Abstract
  • formulations, and reduce the amount of insecticide required for pest control [22]. Nanoparticles are known for their insecticidal properties; they interact with the cell membranes of the insects, causing the denaturation of organelles and enzymes, oxidative stress, and cell death [23][24]. Essential oils are
PDF
Album
Full Research Paper
Published 17 Nov 2023

Recognition mechanisms of hemoglobin particles by monocytes – CD163 may just be one

  • Jonathan-Gabriel Nimz,
  • Pichayut Rerkshanandana,
  • Chiraphat Kloypan,
  • Ulrich Kalus,
  • Saranya Chaiwaree,
  • Axel Pruß,
  • Radostina Georgieva,
  • Yu Xiong and
  • Hans Bäumler

Beilstein J. Nanotechnol. 2023, 14, 1028–1040, doi:10.3762/bjnano.14.85

Graphical Abstract
  • during development, namely nitrogen monoxide scavenging and associated hypertensive crises, massive renal damage due to tubular reabsorption of hemoglobin (Hb), decay into dimers [8][9][10][11][12][13], and oxidative stress [14][15]. Various approaches of intra- as well as intermolecular modifications of
PDF
Album
Supp Info
Full Research Paper
Published 19 Oct 2023

Green SPIONs as a novel highly selective treatment for leishmaniasis: an in vitro study against Leishmania amazonensis intracellular amastigotes

  • Brunno R. F. Verçoza,
  • Robson R. Bernardo,
  • Luiz Augusto S. de Oliveira and
  • Juliany C. F. Rodrigues

Beilstein J. Nanotechnol. 2023, 14, 893–903, doi:10.3762/bjnano.14.73

Graphical Abstract
  • reaction, catalyzing the formation of highly reactive hydroxyl radicals that lead to oxidative stress [28][29]. Thus, one of the possibilities for the observed antiproliferative effects could be the result of an imbalance in iron homeostasis with the consequent induction of oxidative stress and death of
PDF
Album
Full Research Paper
Published 30 Aug 2023

Carboxylic acids and light interact to affect nanoceria stability and dissolution in acidic aqueous environments

  • Matthew L. Hancock,
  • Eric A. Grulke and
  • Robert A. Yokel

Beilstein J. Nanotechnol. 2023, 14, 762–780, doi:10.3762/bjnano.14.63

Graphical Abstract
  • of nanoceria (i.e., cerium oxide in the form of nanoparticles) can store or release oxygen, cycling between Ce3+ and Ce4+; therefore, they can cause or relieve oxidative stress within living systems. Nanoceria dissolution occurs in acidic environments. Nanoceria stabilization is a known problem even
  • potential to inhibit cancerous tumor growth [5], reduce radiation-induced damage [6], and heal wounds [7], among many other effects [8][9] cited in the introduction of [10]. Cerium atoms on nanoceria surfaces can store or release oxygen, cycling between Ce3+ and Ce4+; therefore, they can relieve oxidative
  • stress within biological systems [11]. Nanoceria in plant systems Nanoceria acts as colloids in aqueous environments, in the soil near plant root systems, and within bodily fluids. Acetic, citric, lactic, succinic, and tartaric acid secreted from plant roots are known to complex with metals/metal oxides
PDF
Album
Supp Info
Full Research Paper
Published 27 Jun 2023

Overview of mechanism and consequences of endothelial leakiness caused by metal and polymeric nanoparticles

  • Magdalena Lasak and
  • Karol Ciepluch

Beilstein J. Nanotechnol. 2023, 14, 329–338, doi:10.3762/bjnano.14.28

Graphical Abstract
  • extravasation of tumor cells due to NanoEL and promotes metastasis to new sites [23]. Importantly, NPs can induce endothelial leakiness indirectly, activating the apoptotic pathway or inducing the production of ROS. Moreover, the increased concentration of ROS in the cell contributes to oxidative stress, which
  • , independent of the receptor. Therefore, to confirm the existence of a new method of controlled blood vessel leakiness (i.e., NanoEL), other indirect effects of NPs must be ruled out. NanoEL was shown to be independent of ROS produced in the cell, oxidative stress, and the apoptotic pathway. The possibility of
PDF
Album
Review
Published 08 Mar 2023

Structural, optical, and bioimaging characterization of carbon quantum dots solvothermally synthesized from o-phenylenediamine

  • Zoran M. Marković,
  • Milica D. Budimir,
  • Martin Danko,
  • Dušan D. Milivojević,
  • Pavel Kubat,
  • Danica Z. Zmejkoski,
  • Vladimir B. Pavlović,
  • Marija M. Mojsin,
  • Milena J. Stevanović and
  • Biljana M. Todorović Marković

Beilstein J. Nanotechnol. 2023, 14, 165–174, doi:10.3762/bjnano.14.17

Graphical Abstract
  • . Photoluminescence of CQDs can be tuned, and quantum dots emit light in the range from blue to red. Some of them have very good prooxidant and antioxidant properties [14]. Under blue light irradiation, CQDs produce reactive oxygen species (ROS), which cause oxidative stress and further bacterial death [17][18][19
PDF
Album
Supp Info
Full Research Paper
Published 30 Jan 2023

Micro- and nanotechnology in biomedical engineering for cartilage tissue regeneration in osteoarthritis

  • Zahra Nabizadeh,
  • Mahmoud Nasrollahzadeh,
  • Hamed Daemi,
  • Mohamadreza Baghaban Eslaminejad,
  • Ali Akbar Shabani,
  • Mehdi Dadashpour,
  • Majid Mirmohammadkhani and
  • Davood Nasrabadi

Beilstein J. Nanotechnol. 2022, 13, 363–389, doi:10.3762/bjnano.13.31

Graphical Abstract
  • under genomic and oxidative stress conditions. Furthermore, this formulation had a long residence time (>19 days) in the murine joint after intra-articular injection [29]. In addition, microspheres with a higher surface-to-volume ratio can provide a three-dimensional (3D) environment for cell anchorage
  • monoiodoacetate-induced osteoarthritis in rats. The SM-loaded NPs showed suitable properties in terms of particle size (81.4 nm), zeta potential (−28.3 mV), and high encapsulation efficiency (97.5%). Histological criteria, knee bend score, and oxidative stress remarkably improved in rats treated with the SM
PDF
Album
Review
Published 11 Apr 2022

Coordination-assembled myricetin nanoarchitectonics for sustainably scavenging free radicals

  • Xiaoyan Ma,
  • Haoning Gong,
  • Kenji Ogino,
  • Xuehai Yan and
  • Ruirui Xing

Beilstein J. Nanotechnol. 2022, 13, 284–291, doi:10.3762/bjnano.13.23

Graphical Abstract
  • , Beijing, P. R. China School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, P. R. China 10.3762/bjnano.13.23 Abstract Oxidative stress can lead to permanent and irreversible damage to cellular components and even cause cancer and other diseases. Therefore, the development of
  • offers a new design to harness stable, sustainable antioxidant nanoparticles with high loading capacity, high bioavailability, and good biocompatibility as antioxidants. Keywords: antioxidant; co-assembly; glutathione; myricetin; nanoarchitectonics; Introduction Oxidative stress, caused by an imbalance
  • between antioxidative and oxidative systems, leads to permanent and irreversible damage of cellular components, such as proteins, lipids, and nucleic acids [1]. Furthermore, oxidative stress leads to diseases including Alzheimer’s disease [2], cardiac disease [3], atherosclerosis [4], kidney disease [5
PDF
Album
Supp Info
Correction
Full Research Paper
Published 01 Mar 2022

Biocompatibility and cytotoxicity in vitro of surface-functionalized drug-loaded spinel ferrite nanoparticles

  • Sadaf Mushtaq,
  • Khuram Shahzad,
  • Tariq Saeed,
  • Anwar Ul-Hamid,
  • Bilal Haider Abbasi,
  • Nafees Ahmad,
  • Waqas Khalid,
  • Muhammad Atif,
  • Zulqurnain Ali and
  • Rashda Abbasi

Beilstein J. Nanotechnol. 2021, 12, 1339–1364, doi:10.3762/bjnano.12.99

Graphical Abstract
  • . The nanoparticles caused cytotoxicity via oxidative stress, causing DNA damage and activation of p53-mediated cell cycle arrest (significantly elevated expression, p < 0.005, majorly G1 and G2/M arrest) and apoptosis. Cytotoxicity testing in 3D spheroids showed significant (p < 0.05) reduction in
  • or by leakage of the metal ions from the core surface, causing oxidative stress. This phenomenon can be controlled by coating the NPs with polymeric shells, which enhances their biocompatibility and stability [40]. All drug-loaded samples exhibited a dose-dependent response. Among DOX-loaded NPs, ZFO
  • biocompatibility of NPs-PMA at a given dose and treatment time. Cells undergo oxidative stress upon treatment with functionalized MFe2O4 NPs Generation of ROS has been associated with DNA damage, inflammation, apoptosis and senescence in cells [41]. The 2',7'-dichlorodihydrofluorescein diacetate (H2-DCFDA) assay
PDF
Album
Full Research Paper
Published 02 Dec 2021

Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications

  • Sepand Tehrani Fateh,
  • Lida Moradi,
  • Elmira Kohan,
  • Michael R. Hamblin and
  • Amin Shiralizadeh Dezfuli

Beilstein J. Nanotechnol. 2021, 12, 808–862, doi:10.3762/bjnano.12.64

Graphical Abstract
PDF
Album
Review
Published 11 Aug 2021

The preparation temperature influences the physicochemical nature and activity of nanoceria

  • Robert A. Yokel,
  • Wendel Wohlleben,
  • Johannes Georg Keller,
  • Matthew L. Hancock,
  • Jason M. Unrine,
  • D. Allan Butterfield and
  • Eric A. Grulke

Beilstein J. Nanotechnol. 2021, 12, 525–540, doi:10.3762/bjnano.12.43

Graphical Abstract
  • have adverse consequences and raised the question whether its method of preparation and solubility are contributing factors. In contrast to the results with NM-212, other nanoceria have been demonstrated to have therapeutic potential for multiple conditions with an oxidative stress/inflammation
  • ). The initial experiment was repeated with as-prepared and 75, 102, and 152 day partially dissolved nanoceria. Nanoceria reactivity Oxidative stress, as mass-based biological oxidative damage (mBOD), and surface-based biological oxidative damage (sBOD), of NM-211, NM-212, and the solvothermally
  • more available oxygen on the surface of nanoceria not exposed to high temperature. Biological identity of as-prepared and partially dissolved nanoceria Nanoceria has the potential to act as a pro- or antioxidant, depending on its valence, and the oxidative stress level of the system under study
PDF
Album
Supp Info
Full Research Paper
Published 04 Jun 2021

A review on nanostructured silver as a basic ingredient in medicine: physicochemical parameters and characterization

  • Gabriel M. Misirli,
  • Kishore Sridharan and
  • Shirley M. P. Abrantes

Beilstein J. Nanotechnol. 2021, 12, 440–461, doi:10.3762/bjnano.12.36

Graphical Abstract
  • considered the ion content (Ag+) of those nanoparticles. Toxicity assays could be performed by using oxidative stress and other reliable markers, such as 8-oxoguanine DNA glycosylase 1 (OGG1) and nuclear factor erythroid 2-related factor 2 (Nrf2) [132] or 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
PDF
Album
Supp Info
Review
Published 14 May 2021

A review on the biological effects of nanomaterials on silkworm (Bombyx mori)

  • Sandra Senyo Fometu,
  • Guohua Wu,
  • Lin Ma and
  • Joan Shine Davids

Beilstein J. Nanotechnol. 2021, 12, 190–202, doi:10.3762/bjnano.12.15

Graphical Abstract
  • to generate more reactive oxygen species (ROS) and to induce oxidative stress could be a reason for their antibacterial activity against R. solanacearum in tobacco plants [23]. Aside from MgO NPs, other nanomaterials, including titanium dioxide (TiO2 NPs), zinc oxide (ZnO NPs), copper oxide (CuO NPs
  • oxidative stress response, which makes the p-translucent silkworm a good model to study Parkinson’s disease [92][93]. Mammalian model organisms are mostly used to study the efficacy of new drugs for human-related diseases and also in the screening of antimicrobial drugs [94]. Recent reports indicate
  • concentrations of Ag NPs [122]. Reactive oxygen species (ROS), which are involved in cell signaling and homeostasis [123], are considered a characteristic side-effect of oxygen metabolism. High levels of ROS in living organisms induce oxidative stress, which results in damage to the DNA, proteins, and lipids
PDF
Album
Review
Published 12 Feb 2021

Effect of different silica coatings on the toxicity of upconversion nanoparticles on RAW 264.7 macrophage cells

  • Cynthia Kembuan,
  • Helena Oliveira and
  • Christina Graf

Beilstein J. Nanotechnol. 2021, 12, 35–48, doi:10.3762/bjnano.12.3

Graphical Abstract
  • oxidative stress and cause apoptosis. In addition, intracellular redox homeostasis and gene expression can be modulated [26]. Lanthanide ions are usually not reported as highly toxic. However, they can interact with proteins, enzymes, and other biomolecules [27][28] and might also cause oxidative damage or
PDF
Album
Supp Info
Full Research Paper
Published 08 Jan 2021

Antimicrobial metal-based nanoparticles: a review on their synthesis, types and antimicrobial action

  • Matías Guerrero Correa,
  • Fernanda B. Martínez,
  • Cristian Patiño Vidal,
  • Camilo Streitt,
  • Juan Escrig and
  • Carol Lopez de Dicastillo

Beilstein J. Nanotechnol. 2020, 11, 1450–1469, doi:10.3762/bjnano.11.129

Graphical Abstract
  • induction of oxidative stress, the release of metal ions and the non-oxidative damage. Synthesis of antimicrobial nanoparticles Over the last years, techniques for synthesizing antimicrobial nanoparticles have advanced significantly due to their use in both biomedical and industrial applications. The
  • ][132]. When the size of titanium dioxide is reduced to the nanoscale (TiO2 NPs), its photocatalytic property is greatly improved, generating more reactive oxygen species (ROS). ROS damages bacterial cells, DNA chains, and other cellular structures through oxidative stress. Therefore, the use of TiO2
  • simpler way without major equipment requirements. Mechanisms of antimicrobial action The exact antibacterial mechanisms of NPs are being exhaustively investigated and some processes have been elucidated, including oxidative stress induction, metal ion release, and non-oxidative damage, which affect
PDF
Album
Review
Published 25 Sep 2020

Applications of superparamagnetic iron oxide nanoparticles in drug and therapeutic delivery, and biotechnological advancements

  • Maria Suciu,
  • Corina M. Ionescu,
  • Alexandra Ciorita,
  • Septimiu C. Tripon,
  • Dragos Nica,
  • Hani Al-Salami and
  • Lucian Barbu-Tudoran

Beilstein J. Nanotechnol. 2020, 11, 1092–1109, doi:10.3762/bjnano.11.94

Graphical Abstract
  • are considered the most effective, but unfortunately pure iron is toxic because it leads to high oxidative stress. To avoid this problem there is a lot of ongoing work regarding the design of core–shell particles with pure iron cores [63][64]. Octopod SPIONs (30 nm) were also shown to be better than
  • later by iron oxidative stress [81]. Dextran-coated SPIONs were found to accumulate in large amounts in tumor sites in mice, in contrast to PEG-coated SPIONs, which did not accumulate, even in the presence of an external magnet at the tumor site. The PEG-coated SPIONs exhibited a longer blood
PDF
Album
Review
Published 27 Jul 2020

A few-layer graphene/chlorin e6 hybrid nanomaterial and its application in photodynamic therapy against Candida albicans

  • Selene Acosta,
  • Carlos Moreno-Aguilar,
  • Dania Hernández-Sánchez,
  • Beatriz Morales-Cruzado,
  • Erick Sarmiento-Gomez,
  • Carla Bittencourt,
  • Luis Octavio Sánchez-Vargas and
  • Mildred Quintana

Beilstein J. Nanotechnol. 2020, 11, 1054–1061, doi:10.3762/bjnano.11.90

Graphical Abstract
  • environment. ROS refer to molecules like singlet oxygen, superoxide anion, and radicals, which are responsible for producing oxidative stress in cells followed by cell death [4]. Photosensitizer molecules must be nontoxic before irradiated with light, must produce high amounts of ROS when irradiated with
PDF
Album
Full Research Paper
Published 17 Jul 2020

Identification of physicochemical properties that modulate nanoparticle aggregation in blood

  • Ludovica Soddu,
  • Duong N. Trinh,
  • Eimear Dunne,
  • Dermot Kenny,
  • Giorgia Bernardini,
  • Ida Kokalari,
  • Arianna Marucco,
  • Marco P. Monopoli and
  • Ivana Fenoglio

Beilstein J. Nanotechnol. 2020, 11, 550–567, doi:10.3762/bjnano.11.44

Graphical Abstract
  • platelets [16]. Additionally, SNPs were found to induce pre-thrombotic states through surface-driven activation of the coagulation factor XII [17][18]. Finally, SNPs are known to induce oxidative stress in several cell lines including endothelial cells [19] and leucocytes [20][21], a process that in vivo
PDF
Album
Supp Info
Full Research Paper
Published 03 Apr 2020

Luminescent gold nanoclusters for bioimaging applications

  • Nonappa

Beilstein J. Nanotechnol. 2020, 11, 533–546, doi:10.3762/bjnano.11.42

Graphical Abstract
  • of protamine also lowered the minimum inhibitory concentration by two orders of magnitude. This is attributed to the enhanced catalytic activity upon binding with protamine, which resulted in altered oxidative stress and a higher generation of reactive oxygen species (ROS). Kurdekar et al. developed
PDF
Album
Review
Published 30 Mar 2020

Multilayer capsules made of weak polyelectrolytes: a review on the preparation, functionalization and applications in drug delivery

  • Varsha Sharma and
  • Anandhakumar Sundaramurthy

Beilstein J. Nanotechnol. 2020, 11, 508–532, doi:10.3762/bjnano.11.41

Graphical Abstract
PDF
Album
Review
Published 27 Mar 2020

Poly(1-vinylimidazole) polyplexes as novel therapeutic gene carriers for lung cancer therapy

  • Gayathri Kandasamy,
  • Elena N. Danilovtseva,
  • Vadim V. Annenkov and
  • Uma Maheswari Krishnan

Beilstein J. Nanotechnol. 2020, 11, 354–369, doi:10.3762/bjnano.11.26

Graphical Abstract
  • mediated through oxidative stress. Hence, it is likely that the down-regulation of VEGF may have contributed to the reduced expression of LCLAT1 in the polyplex-treated cells. RFC5 (replication factor C 5) is generally associated with the proliferation of cell nuclear antigen (PCNA) [48] and has also been
PDF
Album
Full Research Paper
Published 17 Feb 2020
Other Beilstein-Institut Open Science Activities